Обеззараживание воды

Чем мы дышим, что пьём, что едим?
lazv
Сообщения: 491
Зарегистрирован: 25 мар 2015, 12:06

Обеззараживание воды

Непрочитанное сообщение lazv » 25 май 2015, 07:25

    По мнению многих экспертов, хлорирование воды - это самое крупное изобретение в медицине, а точнее в профилактической гигиене XX века, принесшее огромную пользу человеку...

    В чем польза хлорирования воды

    Широкому распространению хлора в технологиях водоподготовки способствовала его эффективность при обеззараживании природных вод и способность консервировать уже очищенную воду длительное время. Кроме того, предварительное хлорирование воды позволяет снизить цветность воды, устранить ее запах и привкус, уменьшить расход коагулянтов, а также поддерживать удовлетворительное санитарное состояние очистных сооружений станций водоподготовки.

    Эффективность, доступность и умеренная стоимость, а так же большой опыт работы с этим реагентом обеспечили хлору исключительную роль - более 90% водопроводных станций в мире обеззараживают и обесцвечивают воду хлором, расходуя до 2 млн тонн этого жидкого реагента в год.

    Однако хлор как реагент водоподготовки имеет существенные недостатки. Например, хлор и хлорсодержащие соединения обладают высокой токсичностью, что требует строгого соблюдения повышенных требований техники безопасности. Хлор воздействует, в основном, на вегетативные формы микроорганизмов, при этом грамм-положительные штаммы бактерий более устойчивы к воздействию хлора, чем грамм-отрицательные штаммы (от нем. Stamm, буквально — «ствол», «основа») — чистая культура вирусов, бактерий, других микроорганизмов или культура клеток, изолированная в определённое время и в определённом месте) микроорганизмов.

    Высокой резистентностью (сопротивляемостью )к действию хлора обладают также вирусы, споры и цисты простейших и яйца гельминтов. Необходимость транспортировки, хранения и применения на водопроводных станциях значительного количества жидкого хлора, а также сбросы этого вещества и его соединений в окружающую среду обусловили высокую экологическую опасность. К тому же, хлор обладает высокой коррозионной активностью.


    В чем проблема?

    Наиболее важной проблемой данного метода является высокая активность хлора, он вступает в химические реакции со всеми органическими и неорганическими веществами находящимися в воде. В воде из поверхностных источников (которые в основном являются источниками водозабора) находится огромное количество сложных органических веществ природного происхождения, а также в большинстве крупных промышленных городов в воду попадают с промышленными стоками красители, ПАВ, нефтепродукты, фенолы и пр.

    При хлорировании воды, содержащей вышеприведенные вещества, образуются хлорсодержащие токсины, мутагенные и канцерогенные вещества и яды, в том числе диоксиды, а именно:
    Хлороформ, обладающий канцерогенной активностью

    Дихлорбромметан, хлоридбромметан, трибромметан - обладающие мутагенными свойствами

    2,4,6-трихлорфенол, 2-хлорфенол, дихлорацетонитрил, хлоргиередин, полихлорированные бифенилы - являющиеся иммунотоксичными и канцерогенными веществами

    Тригалогенметаны - канцерогенные соединения хлора

    Данные вещества оказывают замедленное убийственное воздействие на организм человека. Очистка питьевой воды от хлора не решает проблемы, так как многие из опасных соединений образующиеся в воде в процессе ее хлорирования попадают в организм человека через кожу, во время мытья, приема ванн или посещения бассейна. По некоторым данным, часовое принятие ванны содержащей в избыточном количестве хлорированную воду соответствует десяти литрам выпитой хлорированной воды.

    Первые попытки связать онкологическую заболеваемость населения с качеством питьевой воды были предприняты еще в 1947 году. Но вплоть до 1974 года хлорирование воды никак не связывали с онкологией. Считалось, что хлорированная вода не оказывает на здоровье человека неблагоприятного действия.

    К сожалению данные по связи потребления хлорированной питьевой воды поверхностных водоисточников с частотой злокачественных новообразований у населения стали накапливаться только с 70-х годов. Поэтому до сих пор на этот счет существуют разные точки зрения. По мнению некоторых исследователей, с употреблением загрязненной воды может быть связано от 30 до 50% случаев злокачественных опухолей. Другие приводят расчеты, в соответствии с которыми потребление речной воды (по сравнению с водой подземных источников) может привести к увеличению онкологической заболеваемости на 15%.



    И что же делать?

    Пока хлорирование является наиболее проверенным и дешевым методом обеззараживания воды. В ближайшие 20 лет хлорирование воды будет применяться на большинстве станций водоподготовки всех российских водоканалов, постепенно вытесняясь альтернативными методами – озонированием и ультрафиолетом. После процесса хлорирования, свободный хлор из воды улетучивается, однако в водопроводной воде всегда присутствует остаточный хлор иногда, особенно в период паводков, в повышенных концентрациях. Поэтому воду рекомендуют перед употреблением отстоять в течение суток.

    Для гарантированного удаления хлора из воды воспользуйтесь хорошим фильтром, который удалит все вредные примеси и сделает ее приятной на вкус.

    Следует помнить, что пропущенная через фильтр вода очищена от большинства загрязняющих примесей, в том числе и от хлора, убивающего бактерии. Впрок запасаться такой водой не следует, потому что она лишена "консерванта" - хлора, и бактерии начинают размножаться в приятной для них чистой и теплой воде особенно быстро. Если Вы все же решили хранить очищенную воду дольше суток, держите ее в холодильнике в сосуде из нейтрального материала - стекла или пищевой пластмассы.


Автор: АкваЭксперт,Ру
Источник: Информация подготовлена редакцией по материалам из открытых источников

http://www.aquaexpert.ru/enc/articles/chlorum/
Последний раз редактировалось lazv 25 май 2015, 11:10, всего редактировалось 2 раза.

lazv
Сообщения: 491
Зарегистрирован: 25 мар 2015, 12:06

Озонирование воды – дорого, но эффективно

Непрочитанное сообщение lazv » 25 май 2015, 07:31

    Озонирование представляет собой единственный современный метод обработки воды, который действительно универсален, поскольку он проявляет своё действие одновременно в бактериологическом, физическом и органолептическом отношении.


    Одним из наиболее сильных окислителей, уничтожающих бактерии, споры и вирусы, является озон. Механизм обеззараживания воды озоном основан на его способности инактивировать сложные органические вещества белковой природы, содержащиеся в животных и растительных организмах. При озонировании, одновременно с обеззараживанием происходит обесцвечивание воды, а также ее дезодорация и улучшение вкусовых качеств.

    История

    В 1785 г. голландский физик Ван Марум, проводя опыты с электричеством, обратил внимание на запах при образовании искр в электрической машине и на окислительные способности воздуха после пропускания через него электрических искр.

    В 1840 г. немецкий ученый Шейнбейн занимаясь гидролизом воды пытался с помощью электрической дуги разложить её на кислород и водород. И тогда он обнаружил, что образовался новый, доселе не известный науке газ со специфическим запахом. Имя "озон" было присвоено газу Шейнбейном из-за характерного запаха и происходит от греческого слова "озиен", что значит "пахнуть".

    В 1857 г. с помощью созданной Вернером фон Сименсом "совершенной трубки магнитной индукции" удалось построить первую техническую озоновую установку. В 1901 г. фирмой "Сименс" построена первая гидростанция с озонаторной установкой в Висбанде. 22 сентября 1896 г. изобретатель Н. Тесла запатентовал первый генератор озона.

    Исторически применение озона началось с установок по подготовке питьевой воды, когда в 1898 году в городе Сан Мор (Франция) прошли испытания первой опытно-промышленной установки. Уже в 1907 году был построен первый завод по озонированию воды в городе Бон Вуаяж (Франция) для нужд города Ниццы.

    С 1905 г. в России начала действовать экспериментальная установка для озонирования воды при Петропавловской больнице. В 1911 г. в Петербурге была введена в строй самая крупная в мире производственная установка озонирования, обрабатывавшая 44 500 м3 воды в сутки. В советское время в большом масштабе озонирование было использовано на Восточной водопроводной станции в Москве. В 1968 г. станция была оснащена озонаторами французской фирмы «Трейлигаз». Однако из-за относительной дороговизны оборудования, строгости технологии и нестабильного качества выпускаемого оборудования озонирование долго оставалось на уровне эксперимента.

    В настоящее время 95% питьевой воды в Европе проходит озонную подготовку. В США идет процесс перевода с хлорирования на озонирование. В России действуют несколько крупных станций (в Москве, Нижнем Новгороде и других городах).

    Интерес к применению озона при подготовке питьевой воды объясняется тем, что озон обеспечивает быстрое и надёжное обеззараживание, вызывает значительное улучшение органолептических свойств воды - в результате обработки озоном устраняются привкусы и запахи, цветность воды. Кроме того, возрастает содержание растворённого кислорода, что возвращает очищенной воде одно из основных свойств, характеризующих чистые природные источники.

      Процесс

    Озон – О3, аллотропная форма кислорода, являющаяся мощным окислителем химических и других загрязняющих веществ, разрушающихся при контакте. В отличие от молекулы кислорода, молекула озона состоит из трех атомов и имеет более длинные связи между атомами кислорода. По своей реакционной способности озон занимает второе место, уступая только фтору. Озон может существовать во всех трех агрегатных состояниях. При нормальных условиях озон - газ голубоватого цвета. Температура кипения озона – 112 С, а температура плавления составляет – 192 С .

    Озон, используемый для озонирования, получают из атмосферного воздуха в аппаратах, называемых озонаторами, в результате воздействия на него электрического заряда, сопровождающегося выделением озона.

    Озон является бесцветным газом, молекулы которого, состоящие из трех атомов кислорода, являются нестабильными. Спустя небольшой интервал времени после образования, молекула озона распадается, возвращаясь в свое естественное состояние: молекулу кислорода, состоящую из двух атомов. При этом остаются свободные атомы кислорода, которые агрессивно стремятся присоединиться к любым инородным частицам, содержащимся в воде. При этом вода оказывается той средой, в которой бактерии и прочие органические примеси легко разлагаются под действием этих свободных атомов кислорода. Благодаря этому, озон оказывается очень сильным окислителем, и его дезинфицирующие свойства во много раз сильнее других распространенных дезинфекторов, таких как хлор. Предпочтительность использования озона в индустрии подготовки питьевой воды, обусловлена также тем фактом, что озон, в отличие от хлора, не оставляет никакого запаха, полностью разлагаясь на кислород.

    Прозрачная и чистая ключевая вода и воды горных рек, малозагрязнённые посторонними примесями, требуют примерно 0,5 мг/л озона. Вода, поступающая из открытых водохранилищ, может вызывать расход озона до 2 мг/л. Средняя доза озона составляет 1 мг/л. Продолжительность контакта озоно-воздушной смеси с обрабатываемой водой колеблется от 5 до 15 минут сообразно с типами установок и их производительностью, (при повышении температуры время контакта увеличивается).

    Обесцвечивающее действие озона объясняется окислением соединений, вызывающих цветность воды; они превращаются в более простые молекулы, не имеющие окраски. Озонирование придаёт воде отчётливый голубой оттенок, а хлорирование - зеленоватый оттенок.

    Озонирование - наилучший метод обезжелезивания воды, а если железо и марганец содержатся в форме органических соединений или коллоидальных частиц (с размером 0,1 - 0,01 мкм), то обезжелезивание воды возможно только при помощи озоновой очистки воды, т.к. требуется предварительное окисление органических соединений.


    В чем польза

    Озон не придает воде привкусов и запахов и обладает весьма ценным свойством самораспада – после окончания обработки озон превращается обратно в кислород. Благодаря этому передозировка озона не является проблемой. По своей сути очистка воды озоном эквивалентна многократно ускоренной процедуре природной очистки воды, протекающей в естественных условиях под действием кислорода воздуха и солнечного излучения.

    Озон очень сильный окислитель, его окислительный потенциал — 2,06 В. Патогенные микроорганизмы уничтожаются им в 15-20 раз, а споровые формы бактерий — в 300-600 раз быстрее, чем хлором. Вирус полиомиелита погибает при концентрации озона 0,45 мг/л через 2 мин, тогда как от хлора - только за 3 ч при 1мг/л. Исследования показали, что из бактерий, кишечная палочка оказалась наиболее устойчивой к действию окислителей из всей группы кишечных бактерий, быстро погибает при озонировании. Также эффективно использование озонирования в борьбе с возбудителями брюшного тифа и бактериальной дизентерии.

    С химической точки зрения минеральные вещества, растворённые в воде и определяющие в некоторой мере и питательные свойства, не изменяются после озонирования. В то же время, обработка озоном не придаёт воде никаких дополнительных посторонних веществ и химических соединений.


    В чем недостатки

    Озон — газ, токсичный при вдыхании, при высоких концентрациях озона наблюдаются поражения дыхательных путей, легких и слизистой оболочки. Длительное воздействие озона приводит к развитию хронических заболеваний легких и верхних дыхательных путей. Кроме того, хроническое воздействие микро-концентраций озона на организм человека достаточно не изучено.

    Любая система стерилизации, использующая озон, требует тщательного контроля техники безопасности, тестирование константы концентрации озона газоанализаторами, а также аварийного управления чрезмерной концентрацией озона.

    Озонотерапия одно время была весьма популярна - многие считали озон чуть ли панацеей от всех недугов. Но детальное изучение воздействия озона показало, что вместе с больными озон поражает и здоровые клетки кожи, легких. В результате в живых клетках начинаются непредвиденные и непрогнозируемые мутации. Озонотерапия так и не прижилась в Европе, а в США и Канаде официальное медицинское применение озона не легализовано, за исключением альтернативной медицины.

    Чистый озон взрывоопасен, он не взрывается, если его концентрация в озоно-воздушной смеси не превышает 10%, т.е. 140 г/м3. Озон токсичен, ПДК озона в воздухе помещений, где находятся люди, не более 0,0001 мг/л.

      Так в чем же дело

    Наряду с несомненными преимуществами, как наиболее эффективного, комплексного и естественного реагента, у озона есть и недостатки. Метод озонирования намного дороже традиционного хлорирования воды. Озонирование не может быть единственным универсальным методом очистки воды, избавляющим ее от всех возможных загрязнений, и является только одной из ступеней водоподготовки. Кроме того, применение озона накладывает некоторые технологические ограничения.

    Во-первых, из-за насыщения воды озоно-воздушной смесью она приобретает высокую окислительную способность и становится коррозионно-активной. Особенно коррозионная активность может возрасти при повышении температуры или снижения давления в системе, при этом падает растворимость кислорода в воде. Это требует использования оборудования и материалов, стойких к озону - трубы из ПВХ или нержавеющей стали.

    Во-вторых, озонирование — это процесс, требующий определенного состава оборудования:

    озоногенератор, в котором осуществляется выработка озона из воздуха или кислорода;

    система введения озона в воду и его смешения;

    реактор — емкость, в которой за счет перемешивания и выдержки обеспечивается необходимое время реакции озона с водой;

    деструктор озона для удаления остаточного не прореагировавшего озона;

    приборы контроля озона в воде и воздухе.

    К тому же это оборудование надо размещать в отдельном помещении с вентиляцией, эксплуатировать, выполняя необходимые профилактические мероприятия.

    В-третьих, существуют ограничения по количеству озона в воде (доза остаточного озона — не более 0,1 мг/л) и в воздухе (ПДК озона в помещении, где работают люди, — не более 0,1 мкг/л).




    Перспектива

    Опыт использования озонирования на современном этапе, накопленный для систем разной производительности, говори то том, что эту технологию можно и нужно применять не только на мощных водопроводных станциях, отвечающих за снабжение водой крупных городов, но и в системах водоподготовки малой и средней производительности.

    Несомненно, что качество воды при водоподготовке с использованием озонирования будет значительно выше, чем при прочих технологиях, однако экономической оценке этот параметр можно подвергнуть только в оборотных системах. Еще одним преимуществом использования озонирования является то, что при относительно высокой стоимости первичных капитальных затрат эксплуатационные затраты связаны только с потреблением электроэнергии (в среднем 0,05– 0,07 кВт на 1 г озона).


http://www.aquaexpert.ru/enc/articles/ozon/
Последний раз редактировалось lazv 25 май 2015, 09:17, всего редактировалось 1 раз.

lazv
Сообщения: 491
Зарегистрирован: 25 мар 2015, 12:06

Ультрафиолет - высокоточное оружие для уничтожения бактерий в воде

Непрочитанное сообщение lazv » 25 май 2015, 07:37

    Ультрафиолет поражает именно живые клетки, не оказывая воздействие на химический состав воды и воздуха, что исключительно выгодно отличает его от всех химических способов дезинфекции и обеззараживания воды
.


    Достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности обеззараживания воды ультрафиолетовыми лучами.




    Что это за излучение


    Ультрафиолетовое излучение, ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 400—10 нм. Вся область УФ-излучения условно делится на ближнюю (400—200 нм) и далёкую, или вакуумную (200—10 нм); последнее название обусловлено тем, что УФ-излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.







    Ультрафиолет. Источники


    Естественные источники УФ-излучения — Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть УФ-излучения - 290 нм достигает земной поверхности. Более коротковолновое УФ-излучение поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30—200 км от поверхности Земли, что играет большую роль в атмосферных процессах.

    Искусственные источники УФ-излучения. Для различных применений УФ-излучения промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для УФ-излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником УФ-излучения.





    Несмотря на то, что ультрафиолет нам дан самой природой, он небезопасен


    Ультрафиолет бывает трех типов: «А»; «B»; «С». Озоновый слой предотвращает попадание на поверхность земли Ультрафиолета «С». Свет в спектре ультрафиолета «А» имеет длину волн от 320 до 400 нм, свет в спектре ультрафиолет «В» имеет длину волн от 290 до 320 нм. УФ-излучение обладает энергией, достаточной для воздействия на химические связи, в том числе и в живых клетках.

    Энергия ультрафиолетовой компоненты солнечного света вызывает повреждения микроорганизмов на клеточном и генетическом уровнях, тот же самый ущерб наносится людям, но он ограничен кожей и глазами. Солнечные ожоги вызываются воздействием ультрафиолета «В». Ультрафиолет «А» проникает гораздо глубже, чем ультрафиолет «В» и способствует преждевременному старению кожи. Кроме того, воздействие ультрафиолета «А» и «В» приводит к раку кожи.


    Из истории ультрафиолетовых лучей



    Бактерицидное действие ультрафиолетовых лучей было обнаружено около 100 лет назад. Первые лабораторные испытания УФИ в 1920х годах были настолько многообещающими, что полное уничтожение воздушно-капельных инфекций казалось возможным в самое ближайшее время. УФИ стало активно применяться с 1930х годов и в 1936 г. было впервые использовано для стерилизации воздуха в хирургической операционной комнате. В 1937 г. первое применение УФИ в вентиляционной системе одной из американских школ впечатляюще снизило уровень заболеваемости учащихся корью и другими инфекциями. Тогда казалось, что найдено замечательное средство для борьбы с воздушно-капельными инфекциями. Однако, дальнейшее изучение УФИ и опасных побочных действий серьезно сузило возможности его использования в присутствии людей.

    Сила проникновения ультрафиолетовых лучей невелика и распространяются они только по прямой, т.е. в любом рабочем помещении образуется множество затенённых зон, которые не подвержены бактерицидной обработке. По мере удаления от источника ультрафиолетого излучения биоцидность его действия резко снижается. Действие лучей ограничивается поверхностью облучаемого предмета, и его чистота имеет большое значение.





    Бактерицидное действие ультрафиолета



    Обеззараживающий эффект УФ излучения, в основном, обусловлен фотохимическими реакциями, в результате которых происходят необратимые повреждения ДНК. Помимо ДНК ультрафиолет действует и на другие структуры клеток, в частности, на РНК и клеточные мембраны. Ультрафиолет как высокоточное оружие поражает именно живые клетки, не оказывая воздействие на химический состав среды, что имеет место для химических дезинфектантов. Последнее свойство исключительно выгодно отличает его от всех химических способов дезинфекции.




    Применение ультрафиолета

    Ультрафиолет используется в настоящее время в различных областях: медицинских учреждениях (больницы, поликлиники, госпитали); пищевой промышленности (продукты, напитки); фармацевтической промышленности; ветеринарии; для обеззараживания питьевой, оборотной и сточной воды.

    Современные достижения свето- и электротехники обеспечили условия для создания крупных комплексов УФ-обеззараживания. Широкое внедрение УФ-технологии в муниципальные и промышленные системы водоснабжения позволяют обеспечить эффективное обеззараживание (дезинфекцию) как питьевой воды перед подачей в сети горводопровода, так и сточных вод перед их выпуском в водоемы. Это позволяет исключить применение токсичного хлора, существенно повысить надежность и безопасность систем водоснабжения и канализации в целом.





    Обеззараживание воды ультрафиолетом

    Одной из актуальных задач при обеззараживании питьевой воды, а также промышленных и бытовых стоков после их осветления (биоочистки) является применение технологии, не использующей химические реагенты, т. е. технологии, не приводящей к образованию в процессе обеззараживания токсичных соединений (как в случае применения соединений хлора и озонирования) при одновременном полном уничтожении патогенной микрофлоры.

    Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие. Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 390-315 нм. Противорахитичным действием обладают УФ-лучи в диапазоне 315-280 нм, а ультрафиолетовое излучение с длиной волны 280-200 нм обладает способностью убивать микроорганизмы.

    Ультрафиолет. Эффективность

    Ультрафиолетовые лучи длиной волн 220-280 им действуют на бактерии губительно, причем максимум бактерицидного действия соответствует длине волн 264 нм. Данное обстоятельство используется в бактерицидных установках, предназначенных для обеззараживания в основном подземных вод. Источником ультрафиолетовых лучей является ртутно-аргонная или ртутно-кварцевая лампа, устанавливаемая в кварцевом чехле в центре металлического корпуса. Чехол защищает лампу от контакта с водой, но свободно пропускает ультрафиолетовые лучи. Обеззараживание происходит во время протекания воды в пространстве между корпусом и чехлом при непосредственном воздействии ультрафиолетовых лучей на микробы.

    Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб • мин/см2. УФ-облучение наиболее перспективный метод обеззараживания воды с высокой эффективностью по отношению к патогенным микроорганизмам, не приводящий к образованию вредных побочных продуктов, чем иногда грешит озонирование.













    УФ-облучение идеально для обеззараживания артезианских вод




    Точка зрения, что подземные воды считаются свободными от микробных загрязнений в результате фильтрации воды через почву, не совсем верна. Исследования показали, что подземные воды свободны от крупных микроорганизмов, таких как протоза или гельминты, но более мелкие микроорганизмы, например, вирусы, могут проникать сквозь почву в подземные источники воды. Даже если бактерии не обнаружены в воде, оборудование для обеззараживания должно служить барьером от сезонных или аварийных заражений.

    УФ-облучение должно применяться для обеспечения обеззараживания воды до нормативного качества по микробиологическим показателям, при этом необходимые дозы выбираются на основании требуемого снижения концентрации патогенных и индикаторных микроорганизмов.

    УФ-облучение не образует побочных продуктов реакции, его доза может быть увеличена до значений, обеспечивающих эпидемиологическую безопасность, как по бактериям, так и по вирусам. Известно, что УФ-излучение действует на вирусы намного эффективнее, чем хлор, поэтому применение ультрафиолета при подготовке питьевой воды позволяет, в частности, во многом решить проблему удаления вирусов гепатита А, которая не всегда решается при традиционной технологии хлорирования.

    Использование УФ-облучения в качестве обеззараживания рекомендуется для воды, уже прошедшей очистку по цветности, мутности и содержанию железа. Эффект обеззараживания воды контролируют, определяя общее число бактерий в 1 см3 воды и количество индикаторных бактерий группы кишечной палочки в 1 л воды после ее обеззараживания.






    Метод ультрафиолетового обеззараживания имеет следующие преимущества по отношению к окислительным обеззараживающим методам (хлорирование, озонирование):




    УФ облучение летально для большинства водных бактерий, вирусов, спор и протозоа. Оно уничтожает возбудителей таких инфекционных болезней, как тиф, холера, дизентерия, вирусный гепатит, полиомиелит и др. Применение ультрафиолета позволяет добиться более эффективного обеззараживания, чем хлорирование, особенно в отношении вирусов;

    обеззараживание ультрафиолетом происходит за счет фотохимических реакций внутри микроорганизмов, поэтому на его эффективность изменение характеристик воды оказывает намного меньшее влияние, чем при обеззараживании химическими реагентами. В частности, на воздействие ультрафиолетового излучения на микроорганизмы не влияют рН и температура воды;

    в обработанной ультрафиолетовым излучением воде не обнаруживаются токсичные и мутагенные соединения, оказывающие негативное влияние на биоценоз водоемов;

    в отличие от окислительных технологий в случае передозировки отсутствуют отрицательные эффекты. Это позволяет значительно упростить контроль за процессом обеззараживания и не проводить анализы на определение содержания в воде остаточной концентрации дезинфектанта;

    время обеззараживания при УФ облучении составляет 1-10 секунд в проточном режиме, поэтому отсутствует необходимость в создании контактных емкостей;

    достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности УФ комплексов. Современные УФ лампы и пускорегулирующая аппаратура к ним выпускаются серийно, имеют высокий эксплуатационный ресурс;

    для обеззараживания ультрафиолетовым излучением характерны более низкие, чем при хлорировании и, тем более, озонировании эксплуатационные расходы. Это связано со сравнительно небольшими затратами электроэнергии (в 3-5 раз меньшими, чем при озонировании); отсутствием потребности в дорогостоящих реагентах: жидком хлоре, гипохлорите натрия или кальция, а также отсутствием необходимости в реагентах для дехлорирования;

    отсутствует необходимость создания складов токсичных хлорсодержащих реагентов, требующих соблюдения специальных мер технической и экологической безопасности, что повышает надежность систем водоснабжения и канализации в целом;

    ультрафиолетовое оборудование компактно, требует минимальных площадей, его внедрение возможно в действующие технологические процессы очистных сооружений без их остановки, с минимальными объемами строительно-монтажных работ.



Автор: АкваЭксперт.Ру
Источник: Информация подготовлена редакцией по материалам из открытых источников


http://www.aquaexpert.ru/enc/articles/ultraviolet/
У вас нет необходимых прав для просмотра вложений в этом сообщении.


Вернуться в «Вопросы и проблемы экологии»

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и 5 гостей